园艺学报 ›› 2021, Vol. 48 ›› Issue (3): 421-438.doi: 10.16420/j.issn.0513-353x.2020-0602
贾兵, 郭国凌, 王友煜, 魏鹏飞, 余桃, 常笑, 衡伟()
收稿日期:
2020-09-28
出版日期:
2021-03-25
发布日期:
2021-04-02
通讯作者:
衡伟
E-mail:hengwei@ahau.edu.cn
基金资助:
JIA Bing, GUO Guoling, WANG Youyu, WEI Pengfei, YU Tao, CHANG Xiao, HENG Wei()
Received:
2020-09-28
Online:
2021-03-25
Published:
2021-04-02
Contact:
HENG Wei
E-mail:hengwei@ahau.edu.cn
摘要:
以‘砀山酥梨’为试材,于盛花期分别喷施清水、200 mg·L-1PP333、400 mg·L-1 GA3,在幼果分化期,分别取各处理的宿萼果和脱萼果,测定其单果质量、叶绿素、山梨醇、蔗糖、葡萄糖和果糖含量;运用荧光定量PCR技术,分析了与光合作用、山梨醇和蔗糖代谢相关基因的表达量及S6PDH、NAD+-SDH、NADP+-SDH、SPS和SUS酶活。结果表明,各处理宿萼果中山梨醇和蔗糖含量均显著高于脱萼果。宿萼果中显著增加的山梨醇和蔗糖含量,就幼果光合而言,与光系统Ⅱ蛋白亚基编码基因PSⅡpsbD、Rubisco活化酶基因Rubisco activaseⅣ 表达量显著高于脱萼果有关;从山梨醇合成途径来看,与S6PDH1表达量和山梨醇-6-磷酸脱氢酶活性显著高于脱萼果有关;从源–库的转运关系来看,与山梨醇转运蛋白基因SOT3/4/8/14/15/21/25/29/30/31/34表达量显著高于脱萼果有关;从蔗糖合成途径来看,与磷酸蔗糖合成酶基因SPS1/8、蔗糖合成酶基因SUS1/3/7/12/13/15/17表达量及其酶活显著高于脱萼果有关;从蔗糖转运途径来看,与蔗糖转运蛋白SUT1/2/3、液泡膜单糖转运蛋白TMT2/3/4基因相对表达量显著高于脱萼果有关。因此,‘砀山酥梨’宿萼果中较脱萼果中显著增强的山梨醇、蔗糖代谢是影响其形态建成的原因。
中图分类号:
贾兵, 郭国凌, 王友煜, 魏鹏飞, 余桃, 常笑, 衡伟. ‘砀山酥梨’宿萼和脱萼分化期形态建成与碳水化合物的关系[J]. 园艺学报, 2021, 48(3): 421-438.
JIA Bing, GUO Guoling, WANG Youyu, WEI Pengfei, YU Tao, CHANG Xiao, HENG Wei. Relationship Between Morphogenesis and Carbohydrate Synthesis of the Calyx-Persistence Fruit and Calyx-shedding Fruit in Differentiation Stage of‘Dangshan Suli’Pear[J]. Acta Horticulturae Sinica, 2021, 48(3): 421-438.
基因 Gene | ID | 引物序列 Sequence of primer | ||||
---|---|---|---|---|---|---|
F(5′-3′) | R(5′-3′) | |||||
PSⅠsubunitⅡ | Pbr008101.1 | CACAAGCCAGCCTCTTCACC | AAGATCGGCGAGGGAGTTG | |||
PSⅠsubunitⅣ | Pbr042856.1 | CCCAGCACCAACACCAGAA | CGACCGGGTAACGGGTATT | |||
PSⅠpsaK | Pbr021078.1 | GCTGCCACTGTGACCACTTCT | CCTGCCGTTGACTTCCTGTT | |||
F-typeATPase | Pbr031897.1 | GGATGCCGTGGATGATGAGT | GCTCATGGCGGTCATCCTAG | |||
PSⅡpsbD | Pbr002000.1 | CTTTCCTTGTGCCTATTTCGC | AGACCGCCTAATTGACACCAA | |||
Rubisco IV | Pbr005365.1 | GGCTTTCTGACCAGTCCTCG | GTACTGGAAGGACCGGGTGA | |||
Rubisco V | Pbr003848.1 | ATGGGGAGGAAAAGGTCAGG | TCCTGATGATGTCTGCAGCCT | |||
Rubisco VI | Pbr040261.1 | GCTTGGTTCGGTTACCCTCA | AAACCTGCTCACCTGGCTCA | |||
Cyt b6 f II | Pbr011265.1 | GTGCCAGGCAGCCAGTATTT | GCAACTTGACCAGCAGAGCC | |||
Chl a-b P4 | Pbr007291.1 | CAGACGGTGGCAAGACATCA | CAACATTGCCAGTCTCCCATT | |||
Chl a-b CP24 | Pbr000879.2 | TTCATCAATCCCGAGTGGCT | AGCAGTGAGCCGAAGGAGAA | |||
Chl a-b CP29.1 | Pbr021654.1 | CCAAGAAGCCCAAGAAAACAA | CCGTCGTAGTCGTACTGCAAAT |
表1 光合作用相关基因荧光PCR引物序列
Table 1 The primer sequences of the photosynthesis-related genes for qRT-PCR
基因 Gene | ID | 引物序列 Sequence of primer | ||||
---|---|---|---|---|---|---|
F(5′-3′) | R(5′-3′) | |||||
PSⅠsubunitⅡ | Pbr008101.1 | CACAAGCCAGCCTCTTCACC | AAGATCGGCGAGGGAGTTG | |||
PSⅠsubunitⅣ | Pbr042856.1 | CCCAGCACCAACACCAGAA | CGACCGGGTAACGGGTATT | |||
PSⅠpsaK | Pbr021078.1 | GCTGCCACTGTGACCACTTCT | CCTGCCGTTGACTTCCTGTT | |||
F-typeATPase | Pbr031897.1 | GGATGCCGTGGATGATGAGT | GCTCATGGCGGTCATCCTAG | |||
PSⅡpsbD | Pbr002000.1 | CTTTCCTTGTGCCTATTTCGC | AGACCGCCTAATTGACACCAA | |||
Rubisco IV | Pbr005365.1 | GGCTTTCTGACCAGTCCTCG | GTACTGGAAGGACCGGGTGA | |||
Rubisco V | Pbr003848.1 | ATGGGGAGGAAAAGGTCAGG | TCCTGATGATGTCTGCAGCCT | |||
Rubisco VI | Pbr040261.1 | GCTTGGTTCGGTTACCCTCA | AAACCTGCTCACCTGGCTCA | |||
Cyt b6 f II | Pbr011265.1 | GTGCCAGGCAGCCAGTATTT | GCAACTTGACCAGCAGAGCC | |||
Chl a-b P4 | Pbr007291.1 | CAGACGGTGGCAAGACATCA | CAACATTGCCAGTCTCCCATT | |||
Chl a-b CP24 | Pbr000879.2 | TTCATCAATCCCGAGTGGCT | AGCAGTGAGCCGAAGGAGAA | |||
Chl a-b CP29.1 | Pbr021654.1 | CCAAGAAGCCCAAGAAAACAA | CCGTCGTAGTCGTACTGCAAAT |
基因 Gene | ID | 引物序列 Sequence of primer | |
---|---|---|---|
F(5′-3′) | R(5′-3′) | ||
PpyS6PDH1 | Pbr042781.1 | AGACTGGACTTGTCAAGAGGGAA | GTCCTTGCCCAAAAGACTGG |
PpyS6PDH2 | Pbr023248.1 | AGCTTGGCTATCGCCATTTC | TTCCCTCTTGACAAGTCCAGTCT |
PpySDH1 | Pbr022043.1 | CAAAGGAGGCCGCTACAATC | CTAACATCGCCGGAGGAAAC |
PpySDH2 | Pbr032777.1 | CCTTCGGAGCACCAAGAATC | GGGACGAGTAGCATTGAGGC |
PpySDH3 | Pbr013915.1 | GCTGCTTGGCTCGTTGATG | ATCACCATCGGCTCTTTAACCT |
PpySOT2 | Pbr000331.1 | AAGGCAGTGGTGAGGTTGA | GCTCCAGACTTGTTACAGGCT |
PpySOT3 | Pbr005950.1 | AGCCACAGTTGGTCTCGGT | GCTTTGTCTGCCAACCAT |
PpySOT4 | Pbr013451.1 | TGTTGGTGACGAGAAAGAAGC | CACACTTGGTTGCCCTGTAAT |
PpySOT5 | Pbr014102.1 | CCGCACATAAACTGGAGGCT | AGCAGCCTTACTCATCTCCTCAA |
PpySOT8 | Pbr018463.1 | CAAGCAGAAAAAGAATCT | ATCTAATTAACTTGCCCT |
PpySOT10 | Pbr018465.1 | TATGGGGACAGCGGAACAGG | AAGCTCCTTCCTCTCGTCTCG |
PpySOT14 | Pbr018908.1 | GAATTGCTCCTTCATCCCACA | GCAGCTTGTGATCGTAGGAGG |
PpySOT15 | Pbr018910.1 | GTAGAACCTCCGACTGGATTGG | TGTGAGGAAGCCACGATATGAG |
PpySOT21 | Pbr032610.1 | AAGCACGATTGGAATGACGAT | ACGCAGCCTTAGAGGGAAGAT |
PpySOT25 | Pbr034759.1 | GCTGCTCTTTCTGTCGTATTTG | CCACTTGACCTCCTTTCTGAT |
PpySOT26 | Pbr037511.1 | CGTTGCTTCTTGCCAGC | CGTCCGTTGTTCTGACCA |
PpySOT29 | Pbr037515.1 | CTCGGCGACGCTAAGAAAGT | CAGTTCTTTCCATACGCCTTCA |
PpySOT30 | Pbr038546.1 | ACGGTGGCTGTTGGAGTTGT | GTGATGCACAACACGATGGC |
PpySOT31 | Pbr038547.1 | AACAGCAATGGTGGCGAGTAG | AACAGCAATGGTGGCGAGTAG |
PpySOT34 | Pbr039977.1 | TGATTGGTGCTGGATTGGTCT | GGTCTCCTCCCGAGTCTATCAA |
PpySOT35 | Pbr040466.1 | CTCGGCGACGCTAAGAAAGT | CAGTTCTTTCCATACGCCTTCA |
表2 山梨醇代谢相关基因荧光PCR引物序列
Table 2 The primer sequences of the sorbitol metabolism related genes for qRT-PCR
基因 Gene | ID | 引物序列 Sequence of primer | |
---|---|---|---|
F(5′-3′) | R(5′-3′) | ||
PpyS6PDH1 | Pbr042781.1 | AGACTGGACTTGTCAAGAGGGAA | GTCCTTGCCCAAAAGACTGG |
PpyS6PDH2 | Pbr023248.1 | AGCTTGGCTATCGCCATTTC | TTCCCTCTTGACAAGTCCAGTCT |
PpySDH1 | Pbr022043.1 | CAAAGGAGGCCGCTACAATC | CTAACATCGCCGGAGGAAAC |
PpySDH2 | Pbr032777.1 | CCTTCGGAGCACCAAGAATC | GGGACGAGTAGCATTGAGGC |
PpySDH3 | Pbr013915.1 | GCTGCTTGGCTCGTTGATG | ATCACCATCGGCTCTTTAACCT |
PpySOT2 | Pbr000331.1 | AAGGCAGTGGTGAGGTTGA | GCTCCAGACTTGTTACAGGCT |
PpySOT3 | Pbr005950.1 | AGCCACAGTTGGTCTCGGT | GCTTTGTCTGCCAACCAT |
PpySOT4 | Pbr013451.1 | TGTTGGTGACGAGAAAGAAGC | CACACTTGGTTGCCCTGTAAT |
PpySOT5 | Pbr014102.1 | CCGCACATAAACTGGAGGCT | AGCAGCCTTACTCATCTCCTCAA |
PpySOT8 | Pbr018463.1 | CAAGCAGAAAAAGAATCT | ATCTAATTAACTTGCCCT |
PpySOT10 | Pbr018465.1 | TATGGGGACAGCGGAACAGG | AAGCTCCTTCCTCTCGTCTCG |
PpySOT14 | Pbr018908.1 | GAATTGCTCCTTCATCCCACA | GCAGCTTGTGATCGTAGGAGG |
PpySOT15 | Pbr018910.1 | GTAGAACCTCCGACTGGATTGG | TGTGAGGAAGCCACGATATGAG |
PpySOT21 | Pbr032610.1 | AAGCACGATTGGAATGACGAT | ACGCAGCCTTAGAGGGAAGAT |
PpySOT25 | Pbr034759.1 | GCTGCTCTTTCTGTCGTATTTG | CCACTTGACCTCCTTTCTGAT |
PpySOT26 | Pbr037511.1 | CGTTGCTTCTTGCCAGC | CGTCCGTTGTTCTGACCA |
PpySOT29 | Pbr037515.1 | CTCGGCGACGCTAAGAAAGT | CAGTTCTTTCCATACGCCTTCA |
PpySOT30 | Pbr038546.1 | ACGGTGGCTGTTGGAGTTGT | GTGATGCACAACACGATGGC |
PpySOT31 | Pbr038547.1 | AACAGCAATGGTGGCGAGTAG | AACAGCAATGGTGGCGAGTAG |
PpySOT34 | Pbr039977.1 | TGATTGGTGCTGGATTGGTCT | GGTCTCCTCCCGAGTCTATCAA |
PpySOT35 | Pbr040466.1 | CTCGGCGACGCTAAGAAAGT | CAGTTCTTTCCATACGCCTTCA |
基因 Gene | ID | 引物序列Sequence of primer | ||
---|---|---|---|---|
F(5′-3′) | R(5′-3′) | |||
PbrSPS1 | Pbr003107.1 | ATGCCAAGTCGTCGTTGTTG | GTTCAAGACGACGTTTAGCCTTC | |
PbrSPS3 | Pbr009578.1 | GAAACGACTGGGTGAAC | GTGGAGATCGGTCTCAT | |
PbrSPS8 | Pbr042506.1 | ACCGGATGGAGATGGGGAT | CATAATCAATGTAAGGTTAGCAA | |
PbrSUS1 | Pbr001616.1 | CTGACCAATCCGTCTACTTTCCC | CTCAACGAGTCCTGTGAGGTTC | |
PbrSUS3 | Pbr003395.1 | ACCCGGGTCCAGAGCTTAC | AGCTTCCTGGGTGTGCTTCAAAAC | |
PbrSUS7 | Pbr012642.1 | CTGGAGGCAGTTGAACAAAGA | TGTGGCGATCTTACTCTTTACCT | |
PbrSUS12 | Pbr028302.1 | GCAAGGACCGACCTGGA | GAAAGTAGACGGATTGGTCAGCA | |
PbrSUS13 | Pbr031564.1 | CAGGCATGAAAGAAGCAAGGTC | GTAGCAGAAATGCCATCCACTG | |
PbrSUS15 | Pbr035996.1 | GTTGTGGCTGCGGGTGATCA | AGCCTCAATGACAGTCAAGCCG | |
PbrSUS17 | Pbr037395.1 | CTGACCCTCACCGGAGTTTATG | TGGGAAAACGTTCTCTTTCACTCCT | |
PpySUT1 | Pbr031281.1 | TGCTGGTGTTGCTTCTGGTG | GACAGAGTTTAACAAGAGGCCAAG | |
PpySUT2 | Pbr025968.1 | CGCCATTTCCCACAGTTCTAG | CTGTAGGGCCCAACCGAAT | |
PpySUT3 | Pbr039114.1 | TCGCTGATCTCACTGAAAAGGA | TCGCTGATCTCACTGAAAAGGA | |
PbTMT2 | Pbr023965.1 | TTGAATACCCTTCCGCAGTTTA | CATCGTGGAGACTCAGGCAAG | |
PbTMT3 | Pbr033292.1 | CAAGTTCTACAGAGGCTGCGTG | AAGAGTGCTTTGCCCAGTTACA | |
PbTMT4 | Pbr032130.1 | TTTGGCGGTTACCTTGGTTC | CCCAAGCATCAACCTCCAAC |
表3 蔗糖代谢相关基因荧光PCR引物序列
Table 3 The primer sequences of the sucrose metabolism related genes for qRT-PCR
基因 Gene | ID | 引物序列Sequence of primer | ||
---|---|---|---|---|
F(5′-3′) | R(5′-3′) | |||
PbrSPS1 | Pbr003107.1 | ATGCCAAGTCGTCGTTGTTG | GTTCAAGACGACGTTTAGCCTTC | |
PbrSPS3 | Pbr009578.1 | GAAACGACTGGGTGAAC | GTGGAGATCGGTCTCAT | |
PbrSPS8 | Pbr042506.1 | ACCGGATGGAGATGGGGAT | CATAATCAATGTAAGGTTAGCAA | |
PbrSUS1 | Pbr001616.1 | CTGACCAATCCGTCTACTTTCCC | CTCAACGAGTCCTGTGAGGTTC | |
PbrSUS3 | Pbr003395.1 | ACCCGGGTCCAGAGCTTAC | AGCTTCCTGGGTGTGCTTCAAAAC | |
PbrSUS7 | Pbr012642.1 | CTGGAGGCAGTTGAACAAAGA | TGTGGCGATCTTACTCTTTACCT | |
PbrSUS12 | Pbr028302.1 | GCAAGGACCGACCTGGA | GAAAGTAGACGGATTGGTCAGCA | |
PbrSUS13 | Pbr031564.1 | CAGGCATGAAAGAAGCAAGGTC | GTAGCAGAAATGCCATCCACTG | |
PbrSUS15 | Pbr035996.1 | GTTGTGGCTGCGGGTGATCA | AGCCTCAATGACAGTCAAGCCG | |
PbrSUS17 | Pbr037395.1 | CTGACCCTCACCGGAGTTTATG | TGGGAAAACGTTCTCTTTCACTCCT | |
PpySUT1 | Pbr031281.1 | TGCTGGTGTTGCTTCTGGTG | GACAGAGTTTAACAAGAGGCCAAG | |
PpySUT2 | Pbr025968.1 | CGCCATTTCCCACAGTTCTAG | CTGTAGGGCCCAACCGAAT | |
PpySUT3 | Pbr039114.1 | TCGCTGATCTCACTGAAAAGGA | TCGCTGATCTCACTGAAAAGGA | |
PbTMT2 | Pbr023965.1 | TTGAATACCCTTCCGCAGTTTA | CATCGTGGAGACTCAGGCAAG | |
PbTMT3 | Pbr033292.1 | CAAGTTCTACAGAGGCTGCGTG | AAGAGTGCTTTGCCCAGTTACA | |
PbTMT4 | Pbr032130.1 | TTTGGCGGTTACCTTGGTTC | CCCAAGCATCAACCTCCAAC |
图1 ‘砀山酥梨’盛花后10 ~ 165 d果实宿萼果与脱萼果的发育过程
Fig. 1 Development process of the calyx-persistence fruit and calyx-shedding fruit of‘Dangshan Suli’pear from 10 to 165 days after full bloom
图2 ‘砀山酥梨’宿萼果与脱萼果生理指标的比较 CPF. 宿萼果;CSF. 脱萼果;不同字母代表在P ≤ 0.05水平差异显著。
Fig. 2 The relative expression comparison on the physiological index between the calyx-persistence fruit and calyx-shedding fruit of ‘Dangshan Suli’pear CPF. Calyx-persistence fruit;CSF. Calyx-shedding fruit;Different letters represent significant differences at the level of P ≤ 0.05.
图3 ‘砀山酥梨’宿萼果与脱萼果光合作用相关基因相对表达量的比较 CPF. 宿萼果;CSF. 脱萼果;不同字母代表在P ≤ 0.05水平差异显著。
Fig. 3 The relative expression comparison on the photosynthesis related genes between the calyx-persistence fruit and calyx-shedding fruit of‘Dangshan Suli’pear CPF. Calyx-persistence fruit;CSF. Calyx-shedding fruit;Different letters represent significant differences at the level of P ≤ 0.05.
图4 ‘砀山酥梨’宿萼果与脱萼果山梨醇代谢相关基因相对表达量的比较 CPF. 宿萼果;CSF. 脱萼果;不同字母代表在P ≤ 0.05水平差异显著。
Fig. 4 The relative expression comparison on sorbitol metabolism related genes between the calyx-persistence fruit and calyx-shedding fruit of‘Dangshan Suli’pear CPF. Calyx-persistence fruit;CSF. Calyx-shedding fruit;Different letters represent significant differences at the level of P ≤ 0.05.
图5 ‘砀山酥梨’宿萼果与脱萼果蔗糖代谢相关基因相对表达量的比较 CPF. 宿萼果;CSF. 脱萼果;不同字母代表在P ≤ 0.05水平差异显著。
Fig. 5 The relative expression comparison on sucrose metabolism related genes between the calyx-persistence fruit and calyx-shedding fruit of‘Dangshan Suli’pear CPF. Calyx-persistence fruit;CSF. Calyx-shedding fruit;Different letters represent significant differences at the level of P ≤ 0.05.
图6 ‘砀山酥梨’宿萼果与脱萼果山梨醇与蔗糖代谢相关酶活性的比较 CPF. 宿萼果;CSF. 脱萼果;不同字母代表在P ≤ 0.05水平上的差异显著性。
Fig. 6 The comparison on sorbitol and sucrose metabolism related enzyme activity between the calyx-persistence fruit and calyx-shedding fruit of‘Dangshan Suli’pear CPF. Calyx-persistence fruit;CSF. Calyx-shedding fruit;Different letters represent significant differences at the level of P ≤ 0.05.
[1] |
Arehbold D D. 1999. Carbohydrate availability modifies sorbitol dehydrogenase activity of apple fruit. Physiologia Plantarum, 105 (3):391-395.
doi: 10.1034/j.1399-3054.1999.105301.x URL |
[2] |
Chardon F, Bedu M, Calenge F, Klemens P A W, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology, 23:697-702.
doi: 10.1016/j.cub.2013.03.021 URL |
[3] | Chen Yuanyuan, Luo Jialiang, Li Kai, Song Yuqin, Li Liulin. 2018. Comparatives studies on quality and texture of leaving calyx and persistent calyx fruits in pear. Journal of Beijing University of Agriculture, 33 (1):15-21. (in Chinese) |
陈园园, 罗嘉亮, 李凯, 宋宇琴, 李六林. 2018. 梨脱萼果与宿萼果品质比较. 北京农学院学报, 33 (1):15-21. | |
[4] |
Cheng R, Cheng Y S, Lü J H, Cheng J Q, Wang Y Z, Zhang S L, Zhang H P. 2018. The gene PbTMT4 from pear ( Pyrus bretschneideri)mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiologia Plantarum, 164 (3):307-319.
doi: 10.1111/ppl.2018.164.issue-3 URL |
[5] | Cheng Yinsheng, Chen Jianqiu, Chen Dan, Lü Jiahong, Zhang Jun, Zhang Shaoling, Wu Tao, Zhang Huping. 2019. Cloning and functional analysis of the promoter of PbTMT4 gene related sugar transport in pear. Acta Horticulturae Sinica, 46 (1):25-36. (in Chinese) |
程寅胜, 陈健秋, 陈丹, 吕佳红, 张俊, 张绍铃, 伍涛, 张虎平. 2019. 梨糖转运相关基因 PbTMT4启动子克隆及功能分析. 园艺学报, 46 (1):25-36. | |
[6] | Dai Meisong. 2015. Characterization of sorbitol accumulation in sand pear( Purus pyrifolia)fruits and identification of critical genes involved[M. D. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
戴美松. 2015. 砂梨果实山梨醇积累特点与关键基因分析[硕士论文]. 杭州:浙江大学. | |
[7] | Etienne A, Genard M, Lobit P, Mbeguie D, Buguad C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 264 (6):1451-1469. |
[8] | Geigenberger P, Reimholz R, Deiting U, Sonnewald U, Stitt M. 1999. Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant Journal for Cell & Molecular Biology, 19 (2):119-129. |
[9] | Guo Chunmiao, Zhu Zhengyang, Mubarak Ayupu, Xu Juan, Xiao Li, Gong Peng, Yang Bo. Response of sucrose synthase in almond to physiological abscission of young fruit. Xinjiang Agricultural Sciences, 5 (11):2012-2020. |
郭春苗, 朱正阳, 木巴热克·阿尤普, 许娟, 肖丽, 龚鹏, 杨波. 2018. 扁桃蔗糖合成酶对幼果生理脱落的响应研究. 新疆农业科学, 55 (11):2012-2020. | |
[10] | Heng Wei, Chen Jie, Ye Zhenfeng, Jia Bing, Zhang Shuiming, Sun Jun,Zhu Liwu. 2010. Development of calyx and its controlling techniques of young fruit of‘Dangshan Suli’pear(Pyrus bretschneideri Rehd.). Journal of Anhui Agricultural University, 37 (2):238-243. (in Chinese) |
衡伟, 陈捷, 叶振风, 贾兵, 张水明, 孙俊, 朱立武. 2010. 砀山酥梨幼果花萼发育及其调控技术研究. 安徽农业大学学报, 37 (2):238-243. | |
[11] |
Iglesias D J, Levy Y, Gómez-Cadenas A, Tadeo F R, Primo-Millo E, Talon M. 2004. Nitrate improves growth in salt-stressed citrus seedings through effects on photosynthetic activity and chloride accumulation. Tree Physiology, 24 (9):1027-1034.
doi: 10.1093/treephys/24.9.1027 URL |
[12] | Jiang Yanchen. 2011. Research of differences of endogenous hormones and quality in calyx persistent or fall off fruits[Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
姜彦辰. 2011. 梨萼片脱落与宿存果实内源激素及品质的差异研究[博士论文]. 南京:南京农业大学. | |
[13] | Li Jiefa, Yang Qi, Yu Xiuming, Wang Lei, Wang Shiping, Xu Wenping, Zhang Caixi. 2015. Influence of gibberellins on sugar metabolism and related gene expression in fruit of pear (Pyrus pyrifolia). Journal of Shanghai Jiaotong University(Agricultural Sciences), 33 (3):21-28. (in Chinese) |
李节法, 杨琪, 虞秀明, 王磊, 王世平, 许文平, 张才喜. 2015. 赤霉素对梨糖代谢及其关键酶基因表达的影响. 上海交通大学学报(农业科学版), 33 (3):21-28. | |
[14] |
Li J M, Huang X S, Li L T, Zheng D M, Xue C, Zhang S L, Wu J. 2015a. Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta, 241 (6):1363-1379.
doi: 10.1007/s00425-015-2263-y URL |
[15] | Li J M, Zheng D M, Li L T, Qiao X, Wei S W, Bai B, Zhang S L, Wu J. 2015b. Genome-wide function,evolutionary characterization and expression analysis of sugar transporter family genes( Pyrus bretschneideri Rehd.). Plant & Cell Physiology, 56 (9):1721-1737. |
[16] | Liu Ni, Tao Sshutian, Li Leiyan, Huang Wenjiang, Zhang Shaoling. 2013. Changes in endogenous hormones levels of young fruit of‘Dangshan Suli’(Pyrus bretschneideri Rehd.)pear during calyx abscission processes. Journal of Nanjing Agricultural University, 36 (6):147-150. (in Chinese) |
刘妮, 陶书田, 李雷廷, 黄文江, 张绍玲. 2013. ‘砀山酥梨’幼果萼片脱落期内源激素含量变化. 南京农业大学学报, 36 (6):147-150. | |
[17] | Lü Jiahong, Wang Yingzhen, Cheng Rui, Wang Guoming, Zhang Shaoling, Wu Jun, Zhang Huping. 2018. Genome-wide identification and expression analysis of sucrose synthase(SUS)and sucrose phosphate synthase(SPS)gene families in pear. Acta Horticulturae Sinica, 45 (3):421-435. (in Chinese) |
吕佳红, 王英珍, 程瑞, 王国明, 张绍铃, 吴俊, 张虎平. 2018. 梨蔗糖合成相关酶 SUS和 SPS基因家族的鉴定与表达分析. 园艺学报, 45 (3):421-435. | |
[18] |
Loeseher W H, Marlow G C, Kennedy R A. 1982. Sorbitol metabolism and sink-solute inter conversions in developing apple. Plant Physiology, 70:335-339.
doi: 10.1104/pp.70.2.335 URL |
[19] |
Martinoia E, Meyer S, De-Angeli A, Reka N. 2012. Vacuolar transporters in their physiological context. Annual Review of Plant Biology, 63 (1):183-213.
doi: 10.1146/annurev-arplant-042811-105608 URL |
[20] | Nzima M D S, Martin G C, Nishijima C. 1999. Effect of fall defoliation and spring shading on shoot carbohydrate and growth parameters among individual branches of alternate bearing‘Kerman’Pistachio trees. Journal of the American Society for Horticulture Science, 124 (1):52-60. |
[21] | Pan Yan, Meng Xintao, Che Fengbin, Xue Sulin, Zhang Ting, Zhao Shirong, Liao Kang. 2016. Metabolic profiles of sugar metabolism and respiratory metabolismof Korla pear( Pyrus sinkiangensis Yu)throughout fruit development and ripening. Scientia Agricultura Sinica, 49 (17):3391-3412. (in Chinese) |
潘俨, 孟新涛, 车凤斌, 薛素琳, 张婷, 赵世荣, 廖康. 2016. 库尔勒香梨果实发育成熟的糖代谢和呼吸代谢响应特征. 中国农业科学, 49 (17):3391-3412. | |
[22] |
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens P A, Krueger S, Wic S, Neuhaus H E, Büttner M. 2011. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiol, 157 (4):1664-1676.
doi: 10.1104/pp.111.186825 URL |
[23] |
Qi X X, Wu J, Wang L F, Li L T, Cao Y F, Tian L M, Dong X G, Zhang S L. 2013. Identifying the candidate genes involved in the calyx abscission process of‘Kuerlexiangli’(Pyrus sinkiangensis Yu)by digital transcript abundance measurements. BMC Genomics, 14 (1):727-739.
doi: 10.1186/1471-2164-14-727 URL |
[24] | Qi Xiaoxiao. 2014. Investigation of genes expression of calyx survival and shedding of pear by digital gene expression and functional analysis of PsIDA and PsJOINTLESS[Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
齐笑笑. 2014. 梨果实萼片宿存与脱落过程基因表达谱分析及 PsIDA、 PsJOINTLESS基因功能的初步研究[博士论文]. 南京:南京农业大学. | |
[25] |
Schneider S, Beyhl D, Hedrich R, Sauer N. 2008. Functional and physiological characterization of Arabidopsis inositol transportol1,a novel tonoplast-localized transporter for myo-inositol. Plant Cell, 20 (4):1073-1087.
doi: 10.1105/tpc.107.055632 pmid: 18441213 |
[26] |
Schneider S, Hulpke S, Schulz A, Yaron I, Höll J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich R, Sauer N. 2011. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biology, 14 (2):325-336.
doi: 10.1111/plb.2012.14.issue-2 URL |
[27] | Su J, Jia B, Jia S, Ye Z F, Heng W, Zhu L W. 2015. Effect of plant growth regulators on calyx abscission,fruit quality,and auxin-repressed protein (ARP)gene expression in fruitlets of‘Dangshan Suli’pear(Pyrus bretschneideri Rehd.). Journal of Horticultural Science & Biotechnology, 90 (2):135-142. |
[28] |
Suzue Y, Tsukuda M, Hatano S, Kanayama Y, Yamada K, Shiratake K, Yamaki S. 2006. Changes in the activity and gene expression of sorbitol-and sucrose-related enzymes associated with leaf development of ‘La France’pear. Journal of the Japanese Society for Horticultural Science, 75 (1):38-44.
doi: 10.2503/jjshs.75.38 URL |
[29] | Tian Jia, Li Peng, Sai Jingyi, Pu Xiaoqiu, Li Jiang. 2018. Analysis of the development dynamics and size difference of‘Kuerlexiangli’(Pyrus sinkiangensis Yu)deciduous calyx fruit and persistent calyx fruit. Journal of Xinjiang Agricultural University, 41 (1):11-17. (in Chinese) |
田嘉, 李鹏, 赛静忆, 蒲小秋, 李疆. 2018. 库尔勒香梨脱萼、宿萼果果实发育动态及大小差异分析. 新疆农业大学学报, 41 (1):11-17. | |
[30] | Wang Jiuzhao. 2019. Screening of sugar transport related genes in sand pear fruit based on transcriptome[M. D. Dissertation]. Chongqing:Southwest University. (in Chinese) |
王久照. 2019. 基于转录组的砂梨果实糖转运相关基因的筛选[硕士论文]. 重庆:西南大学. | |
[31] | Wang Lifen. 2016. Cloning and functional analysis of sugar transporters PbSUT2, PbHT1 and PbSOT2genes in Pyrus fruit[Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
王利芬. 2016. 梨果实糖转运蛋白PbSUT2,PbHT1和PbSOT2基因的克隆于功能分析[博士论文]. 南京:南京农业大学. | |
[32] | Wang Xiaoqian, Shang Ye, Liu Weicheng, Liu Chang, Du Guo-dong, Lü Deguo. 2019. Effect of growth regulators,Ca and B fertilizers on calyx abscission,fruit quality,and lignin metabolism in Nanguo pear( Pyrus ussuriensis). Journal of Shenyang Agricultural University, 50 (4):399-405. (in Chinese) |
汪晓谦, 商叶, 刘维成, 刘畅, 杜国栋, 吕德国. 2019. 生长调节剂及钙、硼肥对南果梨萼片脱落、果实品质及木质素代谢的影响. 沈阳农业大学学报, 50 (4):399-405. | |
[33] |
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus H E. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. The Plant Cell, 18:3476-3490.
doi: 10.1105/tpc.106.047290 URL |
[34] | Wu Tao. 2011. The characteristics of sugar accumulation and its relationship with fruit size during the fruit development in‘Hosui'and‘Yali’pears (Pyrus bretschneideri)[Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
伍涛. 2011. 丰水、鸭梨果实发育过程中糖积累特性及其与果实大小关系研究[博士论文]. 南京:南京农业大学. | |
[35] |
Yamaki S. 2010. Metabolism and accumulation of sugars translocated to fruit and their regulation. Journal of the Japanese Society for Horticultural Science, 79 (1):1-15.
doi: 10.2503/jjshs1.79.1 URL |
[36] | Yamaki S, Ino M. 1992. Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. The American Society for Horticultural Science, 117 (6):951-954. |
[37] | Yamaki S, Ishiwaka K. 1986. Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Am Soc Hortic Sci, 111 (1):134-137. |
[38] |
Zhang H P, Wu J Y, Tao S T, Wu T, Qi K J, Zhang S J, Wang J Z, Huang W J, Wu J, Zhang S L. 2014. Evidence for apoplasmic phloem unloading in pear fruit. Plant Molecular Biology Reporter, 32 (4):931-939.
doi: 10.1007/s11105-013-0696-7 URL |
[39] | Zhang Huping. 2011. Study on characteristic of transport and accumulation of sugar in developing Pyrus ssp. fruit[Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
张虎平. 2011. 梨果实内糖的转运及积累特性研究[博士论文]. 南京:南京农业大学. | |
[40] | Zhang Shaoling, Xie Zhihua. 2019. Current status,trends,main problems and the suggestions on development of pear industry in China. Journal of Fruit Science, 36 (8):1067-1072. (in Chinese) |
张绍铃, 谢智华. 2019. 我国梨产业发展现状、趋势、存在问题与对策建议. 果树学报, 36 (8):1067-1072. | |
[41] | Zhang Wen. 2017. Effects of potassium on fruit quality and its association with metabolic pathway of trenalose 6-phosphate in apple[M. D. Dissertation]. Yangling:Northwest A & F University. (in Chinese) |
张雯. 2017. 砂梨果实山梨醇积累特点与关键基因分析[硕士论文]. 杨凌:西北农林科技大学. | |
[42] | Zhang Yishun, Huang Xia, Chen Yunfeng. 2009. Experimental course of plant physiology. Beijing: Higher Education Press:139-140. (in Chinese) |
张以顺, 黄霞, 陈云凤. 2009. 植物生理学实验教程. 北京: 高等教育出版社:139-140. |
[1] | 宋健坤, 杨英杰, 李鼎立, 马春晖, 王彩虹, 王 然. 梨新品种‘鲁秀’[J]. 园艺学报, 2022, 49(S2): 3-4. |
[2] | 董星光, 曹玉芬, 张 莹, 田路明, 霍宏亮, 齐 丹, 徐家玉, 刘 超, 王立东. 抗寒脆肉梨新品种‘玉翠香’[J]. 园艺学报, 2022, 49(S2): 5-6. |
[3] | 欧春青, 姜淑苓, 王 斐, 马 力, 张艳杰, 刘振杰. 早熟梨新品种‘兴梨蜜水’[J]. 园艺学报, 2022, 49(S2): 7-8. |
[4] | 张艳杰, 王 斐, 欧春青, 马 力, 姜淑苓, 刘振杰. 梨新品种‘中梨玉脆3’[J]. 园艺学报, 2022, 49(S2): 9-10. |
[5] | 范 净, 陈启亮, 张靖国, 杨晓平, 杜 威, 田 瑞, 周德平, 胡红菊, . 中熟红皮砂梨新品种‘金彤’[J]. 园艺学报, 2022, 49(S2): 11-12. |
[6] | 王苏珂, 李秀根, 杨 健, 王 龙, 苏艳丽, 张向展, 薛华柏. 红皮梨新品种‘丹霞红’[J]. 园艺学报, 2022, 49(S2): 13-14. |
[7] | 王 斐, 欧春青, 张艳杰, 马 力, 姜淑苓. 晚熟耐贮梨新品种‘华秋’[J]. 园艺学报, 2022, 49(S1): 9-10. |
[8] | 宋健坤, 李鼎立, 杨英杰, 马春晖, 王彩虹, 王 然. 梨新品种‘琴岛红’[J]. 园艺学报, 2022, 49(S1): 11-12. |
[9] | 郭伟珍, 赵京献, 李莹. 中早熟梨新品种‘美玉’[J]. 园艺学报, 2022, 49(9): 2051-2052. |
[10] | 刘金明, 郭彩华, 袁星, 亢超, 全绍文, 牛建新. 梨Dof家族基因鉴定及其在宿存与脱落萼片中的表达分析[J]. 园艺学报, 2022, 49(8): 1637-1649. |
[11] | 陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440. |
[12] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[13] | 梁沁, 张延晖, 康开权, 刘瑾航, 李亮, 冯宇, 王超, 杨超, 李永裕. miR168家族进化特性及其在砂梨休眠期的表达模式分析[J]. 园艺学报, 2022, 49(5): 958-972. |
[14] | 刘尚佳, 吕尧, 曹逼力, 陈子敬, 高松, 徐坤. 高温渍涝胁迫对姜叶片光合作用和氮代谢的影响[J]. 园艺学报, 2022, 49(5): 1073-1080. |
[15] | 周徐子鑫, 杨威, 毛美琴, 薛彦斌, 马均. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选[J]. 园艺学报, 2022, 49(5): 1081-1091. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司