园艺学报 ›› 2021, Vol. 48 ›› Issue (1): 26-36.doi: 10.16420/j.issn.0513-353x.2020-0132
祁静静, 秦秀娟, 谢宇, 陈善春, 何永睿*(), 李强*()
收稿日期:
2020-06-05
修回日期:
2020-09-06
出版日期:
2021-01-25
发布日期:
2021-01-29
通讯作者:
何永睿,李强
E-mail:heyongrui@cric.cn;liqiang@cric.cn
基金资助:
QI Jingjing, QIN Xiujuan, XIE Yu, CHEN Shanchun, HE Yongrui*(), LI Qiang*()
Received:
2020-06-05
Revised:
2020-09-06
Online:
2021-01-25
Published:
2021-01-29
Contact:
HE Yongrui,LI Qiang
E-mail:heyongrui@cric.cn;liqiang@cric.cn
摘要:
为了探究过氧化氢酶基因CsKat01在柑橘抵御溃疡病过程中的作用,对感病品种‘晚锦橙’和抗病品种‘四季橘’中CsKat01进行了生物信息和表达分析,并探究了溃疡病菌接种处理后两品种中CAT酶活性和H2O2含量的关系。克隆CsKat01的编码序列并对该基因及其编码蛋白进行结构和功能分析,发现CsKat01编码框全长为1 482 bp,共编码493个氨基酸残基,蛋白序列中含有典型的CAT结构域;通过启动子序列克隆和分析发现‘晚锦橙’和‘四季橘’核心启动子区域均含有水杨酸、茉莉酸和脱落酸的响应元件,但数量不同;利用qRT-PCR分析水杨酸、茉莉酸、脱落酸和柑橘溃疡病菌(Xcc)对CsKat01的诱导表达特性,发现CsKat01的高表达可能使柑橘相对更感病;结合Xcc诱导后植物组织中CsKat01酶活性和H2O2含量,综合分析CsKat01、CAT酶活、H2O2含量和柑橘对溃疡病抗性之间的关系,推测CsKat01基因可能通过调控CAT的酶活性,改变H2O2含量进而影响柑橘对溃疡病的抗性。
中图分类号:
祁静静, 秦秀娟, 谢宇, 陈善春, 何永睿, 李强. 过氧化氢酶基因CsKat01与柑橘溃疡病相关性分析[J]. 园艺学报, 2021, 48(1): 26-36.
QI Jingjing, QIN Xiujuan, XIE Yu, CHEN Shanchun, HE Yongrui, LI Qiang. Correlation Analysis of Citrus Catalase Gene CsKat01 and Citrus Canker Disease[J]. Acta Horticulturae Sinica, 2021, 48(1): 26-36.
图2 多个物种过氧化氢酶蛋白序列比对 Cs:甜橙;Egl:桉树;Vv:葡萄;Nt:烟草;Pt:杨树;At:拟南芥。
Fig. 2 Multiple alignment of catalases of several organisms Cs:Citrus sinensis;Egl:Eucalyptus globulus;Vv:Vitis vinifera;Nt:Nicotiana tabacum;Pt:Populus trichocarpa;At:Arabidopsis thaliana.
图3 不同物种CAT的系统进化树 分支上的数字代表分支的可靠程度,长度代表进化距离。
Fig. 3 The phylogenetic tree of CAT from different species The number on the branch represents the reliability of the branch,and the length represents the evolutionary distance.
元件名称 Cis elements | 功能 Funtion | 序列 Sequence | 位置 Position | 方向 Strand | ||
---|---|---|---|---|---|---|
晚锦橙 Wanjincheng | 四季橘 Calamondin | 晚锦橙 Wanjincheng | 四季橘 Calamondin | |||
ABRE | 脱落酸响应 ABA-responsiveness | ACGTG | 733 | 733 | + | + |
1 536 | - | |||||
CCAAT-box | MYBHv1结合位点 MYBHv1 binding site | CAACGG | 1 307 | 1 320 | - | - |
CGTCA-motif | 茉莉酸响应 JA-responsiveness | CGTCA | 943 | 1 470 | + | - |
1 455 | - | |||||
TCA-element | 水杨酸响应元件 SA-responsiveness | CCATCTTTTT | 1 298 | 1 128 | - | + |
表1 Plant CARE预测CsKat01启动子区域顺式作用元件
Table 1 cis-Acting regulatory elements in promoter of CsKat01 predicted by Plant CARE
元件名称 Cis elements | 功能 Funtion | 序列 Sequence | 位置 Position | 方向 Strand | ||
---|---|---|---|---|---|---|
晚锦橙 Wanjincheng | 四季橘 Calamondin | 晚锦橙 Wanjincheng | 四季橘 Calamondin | |||
ABRE | 脱落酸响应 ABA-responsiveness | ACGTG | 733 | 733 | + | + |
1 536 | - | |||||
CCAAT-box | MYBHv1结合位点 MYBHv1 binding site | CAACGG | 1 307 | 1 320 | - | - |
CGTCA-motif | 茉莉酸响应 JA-responsiveness | CGTCA | 943 | 1 470 | + | - |
1 455 | - | |||||
TCA-element | 水杨酸响应元件 SA-responsiveness | CCATCTTTTT | 1 298 | 1 128 | - | + |
图4 水杨酸、茉莉酸和脱落酸诱导下CsKat01的相对表达 a、a’分别表示四季橘和晚锦橙的数据显著性差异,不同字母表示差异显著,P < 0.05。下同。
Fig. 4 The relative expression of CsKat01 induced by SA,JA and ABA The data significant difference of Calamondin and Wanjincheng is indicated by a and a’ respectively,and different letters indicate significant difference,P < 0.05. The same below.
[1] | Bhatt J M, Challa A K. 2018. First year course-based undergraduate research experience(CURE)using the CRISPR/Cas9 genome engineering technology in zebrafish. Journal of Microbiology & Biology Education, 19(1):1228-1245. |
[2] | Chen Jin-feng, Wang Gong-nan, Cheng Su-man. 2008. Progress about catalase function in plant stress reactions. Acta Botanica Boreali-Occidentalia Sinica, 28(1):188-193. (in Chinese) |
陈金峰, 王宫南, 程素满. 2008. 过氧化氢酶在植物胁迫响应中的功能研究进展. 西北植物学报, 28(1):188-193. | |
[3] |
Dat J F, Pellinen R, Beeckman T, Cotte B V D, Breusegem F V. 2003. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. The Plant Journal, 33(4):621-632.
doi: 10.1046/j.1365-313X.2003.01655.x URL |
[4] |
Fawal N, Li Q, Savelli B, Brette M, Passaia G, Fabre M, Mathe C, Dunand C. 2013. PeroxiBase:a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Research, 41:D441-D444.
doi: 10.1093/nar/gks1083 URL |
[5] |
Finn R D, Tate J, Mistry J, Tate J, Coggill P, Heger A, Pollington J E, Gavin O L, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer E, Eddy S R, Bateman A. 2008. The pfam protein families database. Nucleic Acids Research, 32(1):D138.
doi: 10.1093/nar/gkh121 URL |
[6] | Geourjon C, Deleage G. 1996. SOPMA:significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences Cabios, 11(6):681-684. |
[7] |
He Y R, Jia R R, Qi J J, Chen S C, Lei T G, Xu L Z, Peng A H, Yao L X, Long Q, Li Z G, Li Q. 2019. Functional analysis of citrus AP2 transcription factors identified CsAP2-09 involved in citrus canker disease response and tolerance. Gene, 707:178-188.
doi: 10.1016/j.gene.2019.04.021 URL |
[8] | Hong F S, Song W P, Wan Z G, Yu M L, Yu J, Liu J J, Sheng Y, Xi Q H. 2005. Effect of La (Ⅲ) on the growth and aging of loquat plantlet in vitro. Biological Trace Elenment Research, 104(2):185-192. |
[9] | Hu An-hua, Qi Jing-jing, Zhang Qin-wen, Chen Shan-chun, Zou Xiu-ping, Xu Lan-zhen, Peng Ai-hong, Lei Tian-gang, Yao Li-xiao, Long Qin, He Yong-rui, Li Qiang. 2019. Cloning and expression analysis of the citrus bacterial canker-related gene CsPGIP in citrus. Scientia Agricultura Sinica, 52(4):639-650. (in Chinese) |
胡安华, 祁静静, 张庆雯, 陈善春, 邹修平, 许兰珍, 彭爱红, 雷天刚, 姚利晓, 龙琴, 何永睿, 李强. 2019. 柑橘溃疡病相关基因CsPGIP的克隆与表达. 中国农业科学, 52(4):639-650. | |
[10] | Ina S, Sandhya S, Zhong C. 2016. Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science, 7:570. |
[11] |
Jia H, Zhang Y, Orbovic V, Xu J, White F F, Jones J B, Wang N. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol, 15:817-823.
doi: 10.1111/pbi.12677 URL |
[12] | Jia Rui-rui, Hu An-hua, Chen Shan-chun, Zou Xiu-ping, Peng Ai-hong, Xu Lan-zhen, Lei Tian-gang, Yao Li-xiao, Bai Xiao-jing, He Yong-rui, Li Qiang. 2017. Cloning and expression analysis of CsAP-09:a transcription factor related to citrus canker disease. Acta Horticulturae Sinica, 44(10):1881-1893. (in Chinese) |
贾瑞瑞, 胡安华, 陈善春, 邹修平, 彭爱红, 许兰珍, 雷天刚, 姚利晓, 白晓晶, 何永睿, 李强. 2017. 柑橘响应溃疡病菌转录因子基因CsAP2-09的克隆与功能分析. 园艺学报, 44(10):1881-1893. | |
[13] |
Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33:1870-1874.
doi: 10.1093/molbev/msw054 URL |
[14] |
Lescot M. 2002. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1):325-327.
doi: 10.1093/nar/30.1.325 URL |
[15] |
Li J, Liu J, Wang G Q, Cha J Y, Li G N, Chen S, Li Z, Guo J H. 2015. A chaperone function of no catalase activity is required to maintain catalase activity and for multiple stress responses in Arabidopsis. The Plant Cell, 27:908-925.
doi: 10.1105/tpc.114.135095 URL |
[16] |
Li Q, Dou W F, Qi J J, Qin X J, Chen S C, He Y R. 2020a. Genomewide analysis of the CIII peroxidase family in sweet orange(Citrus sinensis)and expression profiles induced by Xanthomonas citri subsp. citri and hormones. Journal of Genetics, 99:10.
doi: 10.1007/s12041-019-1163-5 URL |
[17] |
Li Q, Hu A H, Dou W F, Qi J J, Long Q, Zou X P, Lei T G, Yao L X, He Y R, Chen S C. 2019. Systematic analysis and functional validation of citrus XTH genes reveals the role of CsXTH04 in citrus bacterial canker resistance and tolerance. Frontiers in Plant Science, 10:1109.
doi: 10.3389/fpls.2019.01109 URL |
[18] |
Li Q, Qi J J, Qin X J, Dou W F, Leu T G, Hu A H, Jia R R, Jiang G J, Zou X P, Long Q, Xu L Z, Peng A H, Yao L X, Chen S C, He Y R. 2020b. CitGVD:a comprehensive database of citrus genomic variations. Horticulture Research, 7:12.
doi: 10.1038/s41438-019-0234-3 URL |
[19] | Liu Xiao-wei, Chen Zhong-lin, Shen Ji-min, Ye Miao-miao, Chen Wen-hui. 2010. Spectrophotometric determination of low concentration of hydrogen peroxide in O3/H2O2 system using titanium sulfate. China Water & Wastewater,(16):126-129. (in Chinese) |
刘小为, 陈忠林, 沈吉敏, 叶苗苗, 陈文辉. 2010. 硫酸钛光度法测定O3/H2O2体系中低浓度H2O2. 中国给水排水,(16):126-129. | |
[20] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method . Methods, 25(4):402-408.
pmid: 11846609 |
[21] |
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem F V, Noctor G. 2010. Catalase function in plant:a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 61(15):4197-4220.
doi: 10.1093/jxb/erq282 pmid: 20876333 |
[22] |
Murl L A J, Kenton P, Atzorn R, Miersch O, Wasternack C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy,antagonism,and oxidative stress leading to cell death. Plant Physiology, 140(1):249-262.
doi: 10.1104/pp.105.072348 URL |
[23] |
Polidoros A N, Mylona P V, Scandalios J G. 2001. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Research, 10(6):555-569.
doi: 10.1023/A:1013027920444 URL |
[24] | Qi Jing-jing, Dou Wan-fu, Zhang Qing-wen, Hu An-hua, Chen Shan-chun, Lei Tian-gang, Peng Ai-hong, Xu Lan-zhen, Yao Li-xiao, He Yong-rui, Li Qiang. 2020. Interacting protein screening and analysis of CsAP2-09-a citrus bacterial canker related transcription factor. Acta Horticulturae Sinica, 47(3):432-444. (in Chinese) |
祁静静, 窦万福, 张庆雯, 胡安华, 陈善春, 雷天刚, 彭爱红, 许兰珍, 姚利晓, 何永睿, 李强. 2020. 柑橘抗溃疡病转录因子CsAP2-09互作蛋白筛选与分析. 园艺学报, 47(3):432-444. | |
[25] |
Queval G. 2007. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of day length-dependent gene expression,and define photoperiod as a crucial factor in the regulation of H2O2 induced cell death. Plant Journal, 52(4):640-657.
doi: 10.1111/j.1365-313X.2007.03263.x URL |
[26] |
Savellia B, Li Q, Webbera M, Jemmata A, Robitaillea A, Zamocky M, Mathe C, Dunand C. 2019. RedoxiBase:a database for ROS homeostasis regulated proteins. Redox Biology, 26:101247.
doi: S2213-2317(19)30580-4 pmid: 31228650 |
[27] | Scott L J, Russell G I, Nixon N B, Dawes P T, Mattey D L. 1999. Oxidation of alphal-proteinase inhibitor by the myeloperoxidase-hydrogen peroxidase system promotes binding to immunoglobulin A. Biochemical & Biophysical Research Communications, 255(3):562. |
[28] | Sonnhammer E L L, Heijine G V, Krogh A V. 1998. A hidden markov model for predicting transmembrane helices in protein sequences. International Conference on Intelligent Systems for Molecular Biology, 6:175-182. |
[29] | Sprenger J, Fink J L, Teasdale R D. 2006. Evaluation and comparison of mammalian subcellular localization prediction methods. BMC Bioinformatics, 7(Suppl 5):S3. |
[30] |
Takahashi H, Chen Z, Du H, Liu Y, Kleaaing D F. 1997. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. The Plant Journal:for Cell and Molecular Biology, 11(5):993-1005.
doi: 10.1046/j.1365-313X.1997.11050993.x URL |
[31] |
Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Breusegem F V. 2004. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. The Plant Journal, 39(1):45-58.
doi: 10.1111/tpj.2004.39.issue-1 URL |
[32] |
Vernooij B, Friedrich L, Weymann K. 1994. A central role of salicylic acid in plant disease resistance. Science, 266(5188):1247-1250.
doi: 10.1126/science.266.5188.1247 URL |
[33] |
Wang J. 2014. Citrus sinensis annotation project(CAP):a comprehensive database for sweet orange genome. PLoS ONE, 9:e87723.
doi: 10.1371/journal.pone.0087723 URL |
[34] | Yang T, Poovaiah B W. 2002. Hydrogen peroxide homeostasis:activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 99:4097-4102. |
[35] |
Yu D, Xie Z, Chen C, Fan B, Chen Z. 1999. Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Molecular Biology, 39(3):477-488.
doi: 10.1023/A:1006180708533 URL |
[36] | Yuan H M, Liu W C, Lu Y T. 2017. Catalase2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host & Microbe, 21(2):143-155. |
[37] |
Zhang A. 2006. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiology, 141(2):475.
doi: 10.1104/pp.105.075416 URL |
[38] |
Zhang Y, Shi X P, Li B H, Zhang Q M, Liang W X, Wang C X. 2016. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiology Biochemistry, 106:64-72.
doi: 10.1016/j.plaphy.2016.04.047 URL |
[39] | Zhang Y Y, Liu X L, Huang H H. 2012. Molecular cloning of Crustin-like gene in the white shrimp(Litopenaeus vannamei)and its mRNA expression with Vibrio parahaemolyticus challenge. Journal of Northwest A & F University, 40(20):119-132. |
[1] | 叶子茂, 申晚霞, 刘梦雨, 王 彤, 张晓楠, 余 歆, 刘小丰, 赵晓春, . R2R3-MYB转录因子CitMYB21对柑橘类黄酮生物合成的影响[J]. 园艺学报, 2023, 50(2): 250-264. |
[2] | 蒋靖东, 韦壮敏, 王楠, 朱晨桥, 叶俊丽, 谢宗周, 邓秀新, 柴利军. 山金柑四倍体资源的发掘与鉴定[J]. 园艺学报, 2023, 50(1): 27-35. |
[3] | 杜玉玲, 杨凡, 赵娟, 刘书琪, 龙超安. 新鱼腥草素钠对柑橘指状青霉的抑菌作用[J]. 园艺学报, 2023, 50(1): 145-152. |
[4] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[5] | 宋 放, 陈 奇, 袁炎良, 陈 沙, 尹海军, 蒋迎春, . 黄肉猕猴桃新品种‘先沃1号’[J]. 园艺学报, 2022, 49(S2): 47-48. |
[6] | 齐永杰, 高正辉, 马 娜, 王清明, 柯凡君, 陈 钱, 徐义流, . 黄肉抗溃疡病猕猴桃新品种‘皖农金果’[J]. 园艺学报, 2022, 49(S2): 49-50. |
[7] | 朱凯杰, 张哲惠, 曹立新, 向舜德, 叶俊丽, 谢宗周, 柴利军, 邓秀新, . 棕色晚熟脐橙新品种‘宗橙’[J]. 园艺学报, 2022, 49(S1): 41-42. |
[8] | 朱世平, 文荣中, 王媛媛, 曾 杨. 特晚熟柑橘新品种‘金乐柑’[J]. 园艺学报, 2022, 49(S1): 43-44. |
[9] | 郑林, 王帅, 刘语诺, 杜美霞, 彭爱红, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病菌侵染的NAC基因的克隆及表达分析[J]. 园艺学报, 2022, 49(7): 1441-1457. |
[10] | 杨海健, 张云贵, 周心智. 柑橘新品种‘云贵脆橙’[J]. 园艺学报, 2022, 49(7): 1611-1612. |
[11] | 张凯, 麻明英, 王萍, 李益, 金燕, 盛玲, 邓子牛, 马先锋. 柑橘HSP20家族基因鉴定及其响应溃疡病菌侵染表达分析[J]. 园艺学报, 2022, 49(6): 1213-1232. |
[12] | 李文婷, 李翠晓, 林小清, 郑永钦, 郑正, 邓晓玲. 基于STR位点对广东省柑橘溃疡病菌种群遗传结构的分析[J]. 园艺学报, 2022, 49(6): 1233-1246. |
[13] | 麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染[J]. 园艺学报, 2022, 49(6): 1247-1260. |
[14] | 贾亚敏, 徐浩, 胡文朗, 王玉雯, 叶欣, 陈立松, 李延, 郭九信. 缺镁对柑橘苗铁的吸收及亚细胞分布和化学形态的影响[J]. 园艺学报, 2022, 49(5): 973-983. |
[15] | 韦壮敏, 魏斯佳, 陈鹏, 胡健兵, 汤雨晴, 叶俊丽, 李先信, 邓秀新, 柴利军. 63份柚类资源S基因型鉴定[J]. 园艺学报, 2022, 49(5): 1111-1120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司