园艺学报 ›› 2021, Vol. 48 ›› Issue (1): 15-25.doi: 10.16420/j.issn.0513-353x.2020-0261
杜艳民, 王文辉*(), 贾晓辉, 王志华, 佟伟, 张鑫楠
收稿日期:
2020-05-25
修回日期:
2020-09-15
出版日期:
2021-01-25
发布日期:
2021-01-29
通讯作者:
王文辉
E-mail:wangwenhui@caas.cn
基金资助:
DU Yanmin, WANG Wenhui*(), JIA Xiaohui, WANG Zhihua, TONG Wei, and ZHANG Xinnan
Received:
2020-05-25
Revised:
2020-09-15
Online:
2021-01-25
Published:
2021-01-29
Contact:
WANG Wenhui
E-mail:wangwenhui@caas.cn
摘要:
以‘鸭梨’为试材,空气处理为对照,分析比较前期超低氧胁迫(0.8% O2 + 0.5% CO2处理15 d,转入5.0% O2 + 0.5% CO2长期贮藏)、静态低氧气调(降温后直接转入5.0% O2 + 0.5% CO2)和“两阶段”缓慢降氧气调(10.0% O2 + 0.5% CO2处理15 d,转入5.0% O2 + 0.5% CO2长期贮藏)对‘鸭梨’采后贮藏过程中虎皮指数、α-法尼烯和共轭三烯、内在品质、呼吸速率、乙烯释放速率及乙烯生物合成及信号转导途径关键基因相对表达量的影响。结果表明:与空气对照相比,采用前期超低氧胁迫、静态低氧气调及“两阶段”缓慢降氧气调均显著降低了‘鸭梨’贮藏及货架期间虎皮病的发生,贮藏240 d及货架7 d后,虎皮指数由高到低依次为:空气对照(93.75%)>“两阶段”缓慢降氧气调(80.00%)> 静态低氧气调(62.50%)>前期超低氧胁迫(53.57%);进一步研究发现,低氧气调抑制了果实共轭三烯的积累,较好地维持了贮藏后期果实可滴定酸和维生素C含量。同时,果实货架初期乙烯释放量显著降低,乙烯释放高峰明显推迟,PbACO1、PbACO3及PbACS1的相对表达量显著降低;而PbCTR1和PbERF1相对表达量升高,货架后PbETR2基因相对表达量快速升高,乙烯大量释放。
中图分类号:
杜艳民, 王文辉, 贾晓辉, 王志华, 佟伟, 张鑫楠. 前期低氧处理对梨虎皮病的防控及乙烯释放的影响[J]. 园艺学报, 2021, 48(1): 15-25.
DU Yanmin, WANG Wenhui, JIA Xiaohui, WANG Zhihua, TONG Wei, and ZHANG Xinnan. Effects of Initial Low Oxygen Treatments on Superficial Scald Prevention and Ethylene Release in Pear[J]. Acta Horticulturae Sinica, 2021, 48(1): 15-25.
基因名称 Gene Name | 基因ID Gene ID | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|---|
Actin | GGACATTCAACCCCTCGTCT | ATCCTTCTGACCCATACCAACC | |
PbACO1 | Pbr000093.1 | GACGCTGGTGGTATCATCCT | TTCCGTCCGACTGAGCTATC |
PbACO3 | Pbr031954.1 | CAAGGATGGTGAATGGGTGGA | TCATCGCCTGGGTTGTAGAAC |
PbACS1 | Pbr015575.1 | CCTGGGGTTCAAAGGGATCA | CCGCCGTTAAGACTACCCTA |
PbACS3 | Pbr029891.1 | GAAGTTTGGCAGCGAGTTCA | CAGATAGCATGGCGGAGAGA |
PbCTR1 | Pbr005495.1 | GGTTTTGGGTGAATGGCTGT | TGCTAGAACCAATGCCAGGA |
PbETR1 | Pbr011796.1 | AGTGAAGGTGTTGAGGAGGG | TGGAATGTGGGTGCTCTGAT |
PbETR2 | Pbr022706.1 | TTGGAGATGAGAACCGGCTT | CGTAGGTAGAAGTGGCCCTC |
PbERF1 | Pbr012684.1 | GTTGGATCATGACGACCGTG | GTATCTCCGCCGCGAATTTT |
表1 引物序列
Table 1 Primer sequences
基因名称 Gene Name | 基因ID Gene ID | 正向引物(5′-3′) Forward primer sequence | 反向引物(5′-3′) Reverse primer sequence |
---|---|---|---|
Actin | GGACATTCAACCCCTCGTCT | ATCCTTCTGACCCATACCAACC | |
PbACO1 | Pbr000093.1 | GACGCTGGTGGTATCATCCT | TTCCGTCCGACTGAGCTATC |
PbACO3 | Pbr031954.1 | CAAGGATGGTGAATGGGTGGA | TCATCGCCTGGGTTGTAGAAC |
PbACS1 | Pbr015575.1 | CCTGGGGTTCAAAGGGATCA | CCGCCGTTAAGACTACCCTA |
PbACS3 | Pbr029891.1 | GAAGTTTGGCAGCGAGTTCA | CAGATAGCATGGCGGAGAGA |
PbCTR1 | Pbr005495.1 | GGTTTTGGGTGAATGGCTGT | TGCTAGAACCAATGCCAGGA |
PbETR1 | Pbr011796.1 | AGTGAAGGTGTTGAGGAGGG | TGGAATGTGGGTGCTCTGAT |
PbETR2 | Pbr022706.1 | TTGGAGATGAGAACCGGCTT | CGTAGGTAGAAGTGGCCCTC |
PbERF1 | Pbr012684.1 | GTTGGATCATGACGACCGTG | GTATCTCCGCCGCGAATTTT |
处理 Treatment | 不同贮藏期 + 货架期的虎皮指数/% Superficial scald incidence during storage and shelf-life | |||||||
---|---|---|---|---|---|---|---|---|
0 ~ 15 d | 16 ~ 240 d | |||||||
O2 | CO2 | O2 | CO2 | 180 d + 0 d | 180 d + 7 d | 240 d + 0 d | 240 d + 7 d | |
前期超低氧胁迫 Initial ultra-low oxygen stress | 0.8 | 0.5 | 5.0 | 0.5 | 0 | 28.33 ± 3.36 c | 20.83 ± 2.13 d | 53.57 ± 4.56 d |
静态低氧气调 Static low oxygen CA | 5.0 | 0.5 | 5.0 | 0.5 | 0 | 33.33 ± 3.33 c | 35.00 ± 3.56 c | 62.50 ± 7.23 c |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 10.0 | 0.5 | 5.0 | 0.5 | 10.26 ± 1.02 b | 41.67 ± 5.12 b | 45.00 ± 5.12 b | 80.00 ± 6.23 b |
对照(空气)Control(air) | 21.0 | 0 | 21.0 | 0 | 33.33 ± 5.36 a | 91.67 ± 6.23 a | 95.00 ± 9.23 a | 93.75 ± 3.35 a |
表2 不同前期低氧处理‘鸭梨’贮藏及货架期间虎皮指数变化
Table 2 Changes in superficial scald incidence of‘Yali’pear during storage and Shelf-life under different initial low oxygen treatments
处理 Treatment | 不同贮藏期 + 货架期的虎皮指数/% Superficial scald incidence during storage and shelf-life | |||||||
---|---|---|---|---|---|---|---|---|
0 ~ 15 d | 16 ~ 240 d | |||||||
O2 | CO2 | O2 | CO2 | 180 d + 0 d | 180 d + 7 d | 240 d + 0 d | 240 d + 7 d | |
前期超低氧胁迫 Initial ultra-low oxygen stress | 0.8 | 0.5 | 5.0 | 0.5 | 0 | 28.33 ± 3.36 c | 20.83 ± 2.13 d | 53.57 ± 4.56 d |
静态低氧气调 Static low oxygen CA | 5.0 | 0.5 | 5.0 | 0.5 | 0 | 33.33 ± 3.33 c | 35.00 ± 3.56 c | 62.50 ± 7.23 c |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 10.0 | 0.5 | 5.0 | 0.5 | 10.26 ± 1.02 b | 41.67 ± 5.12 b | 45.00 ± 5.12 b | 80.00 ± 6.23 b |
对照(空气)Control(air) | 21.0 | 0 | 21.0 | 0 | 33.33 ± 5.36 a | 91.67 ± 6.23 a | 95.00 ± 9.23 a | 93.75 ± 3.35 a |
图1 不同处理‘鸭梨’贮藏180、240 d及货架1 ~ 7 d果实外观情况
Fig. 1 Appearance of control and low oxygen treated‘Yali’pears after storage for 180,240 d and 7 d shelf-life at 20 ℃
图2 不同前期低氧处理‘鸭梨’α-法尼烯和共轭三烯贮藏及货架期间变化 不同小写字母表示同一各处理时期在0.05水平差异显著。
Fig. 2 Changes in α-farnesene and CTols of‘Yali’pear during storage and shelf-life under different initial low oxygen treatments Different small letters indicated significant differences at 0.05 level among different oxygen treatments at the same period.
贮藏环境 Storage scenario | 贮藏期 + 货架期/d Storage + Shlef-life | 内在品质 Quality parameter | ||||
---|---|---|---|---|---|---|
可溶性固形物/% Soluble solids content | 可滴定酸/% Titrable acid content | 维生素C/ (mg · kg-1) Vitamin C | 乙醇/(mg · L-1) Ethanol | 乙醛/(mg · L-1) Acetaldehyde | ||
采收 At harvest | 0 + 0 | 10.87 ± 0.33 | 0.147 ± 0.003 | 53.4 ± 5.3 | 5.01 ± 0.05 | 2.56 ± 0.032 |
前期超低氧胁迫 Initial ultra-low oxygen stress | 180 + 0 | 12.03 ± 0.50 b | 0.109 ± 0.004 d | 11.2 ± 0.7 a | 4.15 ± 0.07 a | 5.90 ± 1.042 a |
180 + 7 | 12.25 ± 0.49 b | 0.127 ± 0.003 b | 40.4 ± 1.2 b | 18.57 ± 0.82 d | 4.10 ± 0.851 b | |
240 + 0 | 12.28 ± 0.61 b | 0.130 ± 0.001 b | 20.3 ± 0.6 a | 4.15 ± 0.68 c | 5.90 ± 1.042 a | |
240 + 7 | 13.04 ± 0.78 a | 0.062 ± 0.001 a | 33.1 ± 0.2 b | 26.74 ± 1.68 c | 3.26 ± 0.567 c | |
静态低氧气调 Static low oxygen CA | 180 + 0 | 12.13 ± 0.27 a | 0.121 ± 0.002 b | 10.2 ± 0.1 b | 4.44 ± 0.39 a | 4.78 ± 0.573 a |
180 + 7 | 11.95 ± 0.82 b | 0.166 ± 0.001 a | 39.1 ± 0.1 b | 35.32 ± 5.06 a | 3.05 ± 0.594 b | |
240 + 0 | 12.22 ± 0.38 a | 0.138 ± 0.002 b | 22.8 ± 1.0 a | 4.44 ± 0.16 c | 4.78 ± 0.090 a | |
240 + 7 | 11.84 ± 0.51 b | 0.050 ± 0.001 b | 29.5 ± 0.1 c | 24.14 ± 3.40 b | 4.12 ± 0.487 b | |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 180 + 0 | 12.22 ± 0.81 a | 0.133 ± 0.002 b | 10.3 ± 0.5 b | 4.23 ± 0.01 a | 3.17 ± 0.450 b |
180 + 7 | 11.60 ± 0.43 b | 0.125 ± 0.001 b | 36.1 ± 0.6 c | 31.23 ± 0.95 b | 8.29 ± 1.278 a | |
240 + 0 | 12.28 ± 0.41 a | 0.151 ± 0.001 a | 10.0 ± 1.1 c | 5.27 ± 0.50 c | 3.20 ± 0.448 b | |
240 + 7 | 12.32 ± 0.31 a | 0.047 ± 0.001 bc | 34.9 ± 0.1 b | 23.09 ± 1.30 b | 7.12 ± 1.254 a | |
对照(空气) Control(air) | 180 + 0 | 12.37 ± 0.62 a | 0.140 ± 0.001 a | 11.6 ± 0.3 a | 4.13 ± 0.35 a | 5.24 ± 0.881 a |
180 + 7 | 12.45 ± 0.64 a | 0.168 ± 0.001 a | 44.0 ± 0.4 a | 26.06 ± 0.45 c | 3.96 ± 1.152 b | |
240 + 0 | 11.84 ± 0.32 b | 0.153 ± 0.001 a | 15.1 ± 0.5 b | 4.14 ± 0.35 b | 5.38 ± 0.908 a | |
240 + 7 | 12.55 ± 0.96 a | 0.042 ± 0.001 c | 44.2 ± 0.1 a | 28.55 ± 6.17 a | 2.24 ± 0.326 c |
表3 不同贮藏环境‘鸭梨’贮藏和货架期间品质变化情况
Table 3 Changes in quality parameters of‘Yali’pear during storage and shelf-life under different storage scenario
贮藏环境 Storage scenario | 贮藏期 + 货架期/d Storage + Shlef-life | 内在品质 Quality parameter | ||||
---|---|---|---|---|---|---|
可溶性固形物/% Soluble solids content | 可滴定酸/% Titrable acid content | 维生素C/ (mg · kg-1) Vitamin C | 乙醇/(mg · L-1) Ethanol | 乙醛/(mg · L-1) Acetaldehyde | ||
采收 At harvest | 0 + 0 | 10.87 ± 0.33 | 0.147 ± 0.003 | 53.4 ± 5.3 | 5.01 ± 0.05 | 2.56 ± 0.032 |
前期超低氧胁迫 Initial ultra-low oxygen stress | 180 + 0 | 12.03 ± 0.50 b | 0.109 ± 0.004 d | 11.2 ± 0.7 a | 4.15 ± 0.07 a | 5.90 ± 1.042 a |
180 + 7 | 12.25 ± 0.49 b | 0.127 ± 0.003 b | 40.4 ± 1.2 b | 18.57 ± 0.82 d | 4.10 ± 0.851 b | |
240 + 0 | 12.28 ± 0.61 b | 0.130 ± 0.001 b | 20.3 ± 0.6 a | 4.15 ± 0.68 c | 5.90 ± 1.042 a | |
240 + 7 | 13.04 ± 0.78 a | 0.062 ± 0.001 a | 33.1 ± 0.2 b | 26.74 ± 1.68 c | 3.26 ± 0.567 c | |
静态低氧气调 Static low oxygen CA | 180 + 0 | 12.13 ± 0.27 a | 0.121 ± 0.002 b | 10.2 ± 0.1 b | 4.44 ± 0.39 a | 4.78 ± 0.573 a |
180 + 7 | 11.95 ± 0.82 b | 0.166 ± 0.001 a | 39.1 ± 0.1 b | 35.32 ± 5.06 a | 3.05 ± 0.594 b | |
240 + 0 | 12.22 ± 0.38 a | 0.138 ± 0.002 b | 22.8 ± 1.0 a | 4.44 ± 0.16 c | 4.78 ± 0.090 a | |
240 + 7 | 11.84 ± 0.51 b | 0.050 ± 0.001 b | 29.5 ± 0.1 c | 24.14 ± 3.40 b | 4.12 ± 0.487 b | |
“两阶段”缓慢降氧气调 Two-stage oxygen reduction CA | 180 + 0 | 12.22 ± 0.81 a | 0.133 ± 0.002 b | 10.3 ± 0.5 b | 4.23 ± 0.01 a | 3.17 ± 0.450 b |
180 + 7 | 11.60 ± 0.43 b | 0.125 ± 0.001 b | 36.1 ± 0.6 c | 31.23 ± 0.95 b | 8.29 ± 1.278 a | |
240 + 0 | 12.28 ± 0.41 a | 0.151 ± 0.001 a | 10.0 ± 1.1 c | 5.27 ± 0.50 c | 3.20 ± 0.448 b | |
240 + 7 | 12.32 ± 0.31 a | 0.047 ± 0.001 bc | 34.9 ± 0.1 b | 23.09 ± 1.30 b | 7.12 ± 1.254 a | |
对照(空气) Control(air) | 180 + 0 | 12.37 ± 0.62 a | 0.140 ± 0.001 a | 11.6 ± 0.3 a | 4.13 ± 0.35 a | 5.24 ± 0.881 a |
180 + 7 | 12.45 ± 0.64 a | 0.168 ± 0.001 a | 44.0 ± 0.4 a | 26.06 ± 0.45 c | 3.96 ± 1.152 b | |
240 + 0 | 11.84 ± 0.32 b | 0.153 ± 0.001 a | 15.1 ± 0.5 b | 4.14 ± 0.35 b | 5.38 ± 0.908 a | |
240 + 7 | 12.55 ± 0.96 a | 0.042 ± 0.001 c | 44.2 ± 0.1 a | 28.55 ± 6.17 a | 2.24 ± 0.326 c |
图3 不同前期低氧处理‘鸭梨’贮藏及货架期间呼吸和乙烯释放速率变化情况
Fig. 3 Changes in respiration rate and ethylene release rate of‘Yali’pear during storage and shelf-life under different initial low oxygen treatments
图4 不同前期低氧处理‘鸭梨’贮藏及货架期间生物合成和信号转导关键基因相对表达量变化情况
Fig. 4 Changes in relative expression of ethylene biosynthesis and signaling transductiong key genes during storage and shelf-life under different initial low oxygen treatments in‘Yali’pear
[1] | Adams D O, Yang S F. 1979. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences USA, 76:170-174. |
[2] |
Bai J, Mattheis J P, Reed N. 2006. Re-initiating softening ability of 1-methylcyclopropene treated‘Bartlett’and‘d’Anjou’pears after regular air or controlled atmosphere storage. Journal of Horticultural Science and Biotechnology, 81:959-964.
doi: 10.1080/14620316.2006.11512182 URL |
[3] |
Bai J, Yin X, Whitaker B D, Deschuytter K, Chen P M. 2009. Combination of 1-methylcyclopene and ethoxyquin to control superficial scald of ‘Anjou’pears. HortTechnology, 19:521-525.
doi: 10.21273/HORTSCI.19.3.521 URL |
[4] |
Bain J M, Mercer F J. 1963. The submicroscopic cytology of superficial scald,a physiological disease of apples. Australian Journal of Biological Sciences, 16:442-449.
doi: 10.1071/BI9630442 URL |
[5] |
Barry C S, Giovannoni J J. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation, 26:143-159.
doi: 10.1007/s00344-007-9002-y URL |
[6] |
Bessemans N, Verboven P, Verlinden B E, Nicolaï B M. 2016. A novel type of dynamic controlled atmosphere storage based on the respiratory quotient(RQ-DCA). Postharvest Biology and Technology, 115:91-102.
doi: 10.1016/j.postharvbio.2015.12.019 URL |
[7] |
Bolt S, Zuther E, Zintl S, Hincha D K, Schmülling T. 2017. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell and Environment, 40, 108-120.
doi: 10.1111/pce.12838 URL |
[8] |
Bordonaba J G, Matthieu-Hurtiger V, Westercamp P, Coureau C, Dupille E, Larrigaudière C. 2013. Dynamic changes in conjugated trienols during storage may be employed to predict superficial scald in‘Granny Smith’apples. LWT-Food Science and Technology, 54:535-541.
doi: 10.1016/j.lwt.2013.06.025 URL |
[9] |
Brenton C P, James P M, David R R. 2020. Extending‘Granny Smith’apple superficial scald control following long term ultra-low oxygen controlled atmosphere storage. Postharvest Biology and Technology, 161:111062.
doi: 10.1016/j.postharvbio.2019.111062 URL |
[10] |
Calvo G, Candan A P, Civello M, Giné-Bordonaba J, Larrigaudière C. 2015. An insight into the role of fruit maturity at harvest on superficial scald development in‘Beurré D’Anjou’pear. Scientia Horticulturae, 192:173-179.
doi: 10.1016/j.scienta.2015.05.032 URL |
[11] | Chen Kun-song, Yu Liang, Zhou Shan-tao. 1991. A study on controlled atmosphere storage of‘Yali’pears. Acta Horticulture Sinica, 18(2):131-137. (in Chinese) |
陈昆松, 于梁, 周山涛. 1991. ‘鸭梨’果实气调贮藏的研究. 园艺学报, 18(2):131-137. | |
[12] |
Cheng Y D, Liu L Q, Feng Y X, Dong Y, Guan J F. 2019. Effects of 1-MCP on fruit quality and core browning in‘Yali’pear during cold storage. Scientia Horticulturae, 243:350-356.
doi: 10.1016/j.scienta.2018.08.041 URL |
[13] |
Chiriboga M, Saladie M, Bordonaba J, Recasens I, Garcia-mas J, Larrigaudière C. 2013. Effect of cold storage and 1-MCP treatment on ethylene perception,signaling and synthesis:influence on the devel opment of the evergreen behavior in‘Conference’pears. Postharvest Biology and Technology, 86:212-220.
doi: 10.1016/j.postharvbio.2013.07.003 URL |
[14] |
Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei Z, Giovannoni J. 2010. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biology, 10:229.
doi: 10.1186/1471-2229-10-229 URL |
[15] |
Defilippi B G, Kader A A, Dandekar A M. 2005. Apple aroma:alcohol acyltrans-ferase,a rate limiting step for ester biosynthesis,is regulated by ethylene. Plant Science, 168:1199-1210.
doi: 10.1016/j.plantsci.2004.12.018 URL |
[16] |
Delele M A, Bessemans N, Gruyters W, Rogge S, Janssen S, Verlinden B E, Smeets B. 2019. Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions. Postharvest Biology and Technology, 156:110903.
doi: 10.1016/j.postharvbio.2019.05.004 URL |
[17] | DeLong J M, Prange R K, Leyte J C, Harrison P A. 2004. A new technology that determines low-oxygen thresholds in controlled-atmosphere-stored apples. Hort Technology, 14:262-266. |
[18] |
Du L, Song J, Palmer L C, Fillmore S, Zhang Z Q. 2017. Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit. Postharvest Biology and Technology, 123:33-50.
doi: 10.1016/j.postharvbio.2016.08.005 URL |
[19] | Du Yan-min, Wang Wen-hui, Jia Xiao-hui, Le Wen-quan, Wei Jian-mei, Guan Jun-feng. 2017. Development status and proposal of pear storage industry of Hebei Province. Storage and Process, 17(2):1-6. (in Chinese) |
杜艳民, 王文辉, 贾晓辉, 乐文全, 魏建梅, 关军锋. 2017. 河北省梨果贮藏产业发展现状及建议. 保鲜与加工, 17(2):1-6. | |
[20] |
El-Sharkawy I, Jones B, Li Z G, Lelièvre J M, Pech J C, Latché A. 2003. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears(Pyrus communis L.)with/without cold requirement. Journal of Experimental Botany, 54:1615-1625.
doi: 10.1093/jxb/erg158 URL |
[21] |
Feng Y X, Cheng Y D, He J G, Li L M, Guan J F. 2018. Effects of 1-methylcyclopropene and modified atmosphere packaging on fruit quality and superficial scald in Yali pears during storage. Journal of Integrative Agriculture, 17(7):1667-1675.
doi: 10.1016/S2095-3119(18)61940-9 URL |
[22] |
Gapper N E, Bai J, Whitaker B D. 2006. Inhibition of ethylene-induced α-farnesene synthase gene PcAFS1 expression in‘d’Anjou’pears with 1-MCP reduces synthesis and oxidation of α-farnesene and delays development of superficial scald. Postharvest Biology and Technology, 41:225-233.
doi: 10.1016/j.postharvbio.2006.04.014 URL |
[23] |
Guerra R, Gardé I V, Antunes M D, Silva D A, Antunes R, Cavaco A M. 2012. A possibility for non-invasive diagnosis of superficial scald in‘Rocha’pear based on chlorophyll a fluorescence,colorimetry,and the relation between α-farnesene and conjugated trienols. Scientia Horticulturae, 134:127-138.
doi: 10.1016/j.scienta.2011.11.017 URL |
[24] |
Hui W, Niu J, Xu X, Guan J F. 2016. Evidence supporting the involvement of MHO in the formation of superficial scald in‘Dangshansuli’pears. Postharvest Biology and Technology, 121:43-50.
doi: 10.1016/j.postharvbio.2016.07.005 URL |
[25] | Ji Shu-juan, Yin Jing-nan, Li Jia-zheng, Huang Yan-feng. 2010. Determination of alcohol and acetaldehyde in pomelo by static head space gas chromatography. Storage and Process, 10(4):17-20. (in Chinese) |
纪淑娟, 尹竞男, 李家政, 黄艳凤. 2010. 静态顶空气相色谱法测定蜜柚中乙醇和乙醛含量. 保鲜与加工, 10(4):17-20. | |
[26] |
Larrigaudière C, Lindo-García V, Ubach D, Giné-Bordonaba J. 2019. 1-Methylcyclopropene and extreme ULO inhibit superficial scald in a different way highlighting the physiological basis of this disorder in pear. Scientia Horticulturae, 250:148-153.
doi: 10.1016/j.scienta.2019.02.049 URL |
[27] | Liu Yong, Wang Zeqiong, Gong Linzhong, Wang Furong, Wang Huiliang, Ai Xiaoyan, He Huaping. 2020. Cloning and functional analysis of ERF transcription factor gene PpERF1a in peach. Acta Horticulturae Sinica, 47(6):1165-1171. (in Chinese) |
刘勇, 王泽琼, 龚林忠, 王富荣, 王会良, 艾小艳, 何华平. 2020. 桃乙烯应答因子PpERF1a的克隆与功能分析. 园艺学报, 47(6):1165-1171. | |
[28] |
Lurie S, Watkins C B. 2012. Superficial scald,its etiology and control. Postharvest Biology and Technology, 65:44-60.
doi: 10.1016/j.postharvbio.2011.11.001 URL |
[29] | Ma Fengli, Du Yanmin, Wang Yang, Tong Wei, Liu Bailin, Wang Wenhui, Jia Xiaohui. 2019. Effect of 1-methylcyclopropene(1-MCP)on quality and chlorophyll maintenance of postharvest‘Yuluxiang’pear. Acta Horticultuae Sinica, 46(12):2299-2308. (in Chinese) |
马风丽, 杜艳民, 王阳, 佟伟, 刘佰霖, 王文辉, 贾晓辉. 2019. 1-MCP对‘玉露香’梨采后果实品质和叶绿素保持的影响. 园艺学报, 46(12):2299-2308. | |
[30] | Ma Fuli, Mu Wenlei, Zhou Junyong, Lu Lijuan, Sun Qibao, Wang Hai-Yan, Sun Jun. 2020. Activity and function analysis of MdRDACO1 flanking the retro- transposon Mdsolo-LTR1 insertion site in‘Red Delicious’apple spur mutants. Acta Horticultuae Sinica, 47(8):1429-1437. (in Chinese) |
马福利, 穆文磊, 周军永, 陆丽娟, 孙其宝, 王海燕, 孙俊. 2020. ‘元帅’苹果短枝变异逆转座子插入位点临近基因MdRDACO1的表达及功能分析. 园艺学报, 47(8):1429-1437. | |
[31] | Mu Qian. 2015. Functional analysis of the ethylene biosynthesis and signaling pathway related genes during the ripening of five species of fruit crops. [Ph. D. Dissertation]. Nanjing:Nanjing Agricultural University. (in Chinese) |
慕茜. 2015. 五种水果作物果实成熟过程中乙烯合成及应答途径相关基因的功能分析[博士论文]. 南京:南京农业大学. | |
[32] |
Niu J P, Hou Z, Ou Z F, Hui W. 2018. Comparative study of effects of resveratrol,1-MCP and DPA treatments on postharvest quality and superficial scald of‘Starkrimson’apples. Scientia Horticulturae, 240:516-521.
doi: 10.1016/j.scienta.2018.06.037 URL |
[33] |
Pesis E, Ibanez A M, Phu M L, Mitcham E J, Ebeler S E, Dandekar A M. 2009. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis. Journal of Agricultural and Food Chemistry, 57:2786-2792.
doi: 10.1021/jf802564z pmid: 19253953 |
[34] |
Sabban-Amin R, Feygenberg O, Belausov E, Pesis E. 2011. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species(ROS)accumulation in stored‘Granny Smith’apples. Postharvest Biology and Technology, 62:295-304.
doi: 10.1016/j.postharvbio.2011.06.016 URL |
[35] |
Watkins C B, Nock J F, Whitaker B D. 2000. Responses of early,mid and late season apple cultivars to postharvest application of 1-methylcyclopropene(1-MCP)under air and controlled atmosphere storage conditions. Postharvest Biology and Technology, 19:17-32.
doi: 10.1016/S0925-5214(00)00070-3 URL |
[36] |
Xiao Y Y, Chen J Y, Kuang J F, Shan W, Xie H, Jiang Y M, Lu W J. 2013. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 64:2499-2510.
doi: 10.1093/jxb/ert108 URL |
[37] |
Xie X B, Song J K, Wang Y, Sugar D. 2014. Ethylene synthesis,ripening capacity,and superficial scald inhibition in 1-MCP treated‘d’Anjou’pears are affected by storage temperature. Postharvest Biology and Technology, 97:1-10.
doi: 10.1016/j.postharvbio.2014.06.002 URL |
[38] |
Yan S J, Li L, He L H, Liang L Y, Li X D. 2013. Maturity and cooling rate affects browning,polyphenol oxidase activity and gene expression of ‘Yali’pears during storage. Postharvest Biology and Technology, 85:39-44.
doi: 10.1016/j.postharvbio.2013.04.016 URL |
[39] |
Yang X T, Song J, Campbell-Palmer L, Fillmore S, Zhang Z. 2013. Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biology and Technology, 78:55-66.
doi: 10.1016/j.postharvbio.2012.11.012 URL |
[40] |
Yazdani N, Arzani K, Mostofi Y, Shekarchi M. 2011. α-Farnesene and antioxida-tive enzyme systems in Asian pear(Pyrus serotina Rehd.)fruit. Postharvest Biology and Technology, 59:227-231.
doi: 10.1016/j.postharvbio.2010.09.002 URL |
[41] |
Yu J F, Wang Y. 2017. The combination of ethoxyquin,1-methylcyclopropene and ethylene treatments controls superficial scald of‘d’Anjou’pears with recovery of ripening capacity after long-term controlled atmosphere storage. Postharvest Biology and Technology, 127:53-59.
doi: 10.1016/j.postharvbio.2017.01.012 URL |
[42] |
Zhou S, Cheng Y D, Guan J F. 2017. The molecular basis of superficial scald development related to ethylene perception and α-farnesene metabolism in‘Wujiuxiang’pear. Scientia Horticulturae, 216:76-82.
doi: 10.1016/j.scienta.2016.12.025 URL |
[43] |
Zhou X, Zhang Z L, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, McCourt P. 2016. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiology, 171:2760-2770.
doi: 10.1104/pp.16.00154 pmid: 27255484 |
[1] | 宋健坤, 杨英杰, 李鼎立, 马春晖, 王彩虹, 王 然. 梨新品种‘鲁秀’[J]. 园艺学报, 2022, 49(S2): 3-4. |
[2] | 董星光, 曹玉芬, 张 莹, 田路明, 霍宏亮, 齐 丹, 徐家玉, 刘 超, 王立东. 抗寒脆肉梨新品种‘玉翠香’[J]. 园艺学报, 2022, 49(S2): 5-6. |
[3] | 欧春青, 姜淑苓, 王 斐, 马 力, 张艳杰, 刘振杰. 早熟梨新品种‘兴梨蜜水’[J]. 园艺学报, 2022, 49(S2): 7-8. |
[4] | 张艳杰, 王 斐, 欧春青, 马 力, 姜淑苓, 刘振杰. 梨新品种‘中梨玉脆3’[J]. 园艺学报, 2022, 49(S2): 9-10. |
[5] | 范 净, 陈启亮, 张靖国, 杨晓平, 杜 威, 田 瑞, 周德平, 胡红菊, . 中熟红皮砂梨新品种‘金彤’[J]. 园艺学报, 2022, 49(S2): 11-12. |
[6] | 王苏珂, 李秀根, 杨 健, 王 龙, 苏艳丽, 张向展, 薛华柏. 红皮梨新品种‘丹霞红’[J]. 园艺学报, 2022, 49(S2): 13-14. |
[7] | 王 斐, 欧春青, 张艳杰, 马 力, 姜淑苓. 晚熟耐贮梨新品种‘华秋’[J]. 园艺学报, 2022, 49(S1): 9-10. |
[8] | 宋健坤, 李鼎立, 杨英杰, 马春晖, 王彩虹, 王 然. 梨新品种‘琴岛红’[J]. 园艺学报, 2022, 49(S1): 11-12. |
[9] | 郭伟珍, 赵京献, 李莹. 中早熟梨新品种‘美玉’[J]. 园艺学报, 2022, 49(9): 2051-2052. |
[10] | 刘金明, 郭彩华, 袁星, 亢超, 全绍文, 牛建新. 梨Dof家族基因鉴定及其在宿存与脱落萼片中的表达分析[J]. 园艺学报, 2022, 49(8): 1637-1649. |
[11] | 陶鑫, 朱荣香, 贡鑫, 吴磊, 张绍铃, 赵建荣, 张虎平. 梨果糖激酶基因PpyFRK5在果实蔗糖积累中的作用[J]. 园艺学报, 2022, 49(7): 1429-1440. |
[12] | 张秋悦, 刘昌来, 于晓晶, 杨甲定, 封超年. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. |
[13] | 王妍, 孙政, 冯珊, 袁心怡, 仲林林, 曾云流, 傅小鹏, 程运江, 包满珠, 张帆. 香石竹DcERF-1转录因子对切花衰老的负调控作用[J]. 园艺学报, 2022, 49(6): 1313-1326. |
[14] | 梁沁, 张延晖, 康开权, 刘瑾航, 李亮, 冯宇, 王超, 杨超, 李永裕. miR168家族进化特性及其在砂梨休眠期的表达模式分析[J]. 园艺学报, 2022, 49(5): 958-972. |
[15] | 周徐子鑫, 杨威, 毛美琴, 薛彦斌, 马均. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选[J]. 园艺学报, 2022, 49(5): 1081-1091. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司